

Science Virtual Learning

MPI Physics 210
Thermodynamics 7: Latent Heat
May 15, 2020

Lesson: MPI Thermodynamics 7 - Latent Heat May 15, 2020

Objective: To understand heat flows during phase transitions, and why they happen at constant temperature

This video discusses heat flows during phase transitions, and why they happen at constant temperature.

https://youtu.be/SlnuVK4J3wM

Video: Latent Heat

TABLE 19.2 Latent Heats of Fusion and Vaporization

Substance	Melting Point (°C)	Latent Heat of Fusion (J/kg)	Boiling Point (°C)	Latent Heat of Vaporization (J/kg)
Heliuma	-272.2	5.23×10^{3}	-268.93	2.09×10^{4}
Oxygen	-218.79	1.38×10^{4}	-182.97	2.13×10^{5}
Nitrogen	-209.97	2.55×10^{4}	-195.81	2.01×10^{5}
Ethyl alcohol	-114	1.04×10^{5}	78	8.54×10^{5}
Water	0.00	3.33×10^{5}	100.00	2.26×10^{6}
Sulfur	119	3.81×10^{4}	444.60	3.26×10^{5}
Lead	327.3	2.45×10^{4}	1 750	8.70×10^{5}
Aluminum	660	3.97×10^{5}	2 450	1.14×10^{7}
Silver	960.80	8.82×10^{4}	2 193	2.33×10^{6}
Gold	1 063.00	6.44×10^4	2 660	
Copper	1 083	1.34×10^{5}	1 187	1.58×10^{6} 5.06×10^{6}

^aHelium does not solidify at atmospheric pressure. The melting point given here corresponds to a pressure of 2.5 MPa.

Latent Heat Table

TABLE 19.1 Specific Heats of Some Substances at 25°C and Atmospheric Pressure

Substance	Specific Heat (J/kg·°C)	Substance	Specific Heat (J/kg·°C)
Elemental solids		Other solids	
Aluminum	900	Brass	380
Beryllium	1 830	Glass	837
Cadmium	230	Ice (-5°C)	2 090
Copper	387	Marble	860
Germanium	322	Wood	1 700
Gold Iron	129 448 128 703 234	Liquids Alcohol (ethyl) Mercury	2 400
Lead Silicon			140
Silver		Water (15°C)	4 186
		Gas Steam (100°C)	2 010
<i>Note:</i> To convert values to 1	units of cal/g \cdot °C, divide by 4 1	86.	

Specific Heat Table

Ex 1. How much energy does it take to completely boil off 2 liters (2.00 kg) of water that starts at 20.0°C? If the burner heating the water has a power of 1200 W, how much time does it take to boil off the water?

Ex 2. If you put 0.250 kg of water at 18.0°C in an ice tray and stick it in the freezer, how much heat must be removed from the water to turn it into ice at -15.0 °C?

Part 1: https://youtu.be/qK0esR Q3 4

Part 2: https://youtu.be/IWch_atPLnl

Latent Heat - Examples

Homework 1

- Try to solve the problem yourself, then watch the solution video:
- https://youtu.be/qP2Dt39kTyY

1. How much heat must be added to 0.500 kg of lead at 15.0°C to raise its temperature to the melting point (327°C) and then melt it completely?

Homework 2

- Try to solve the problem yourself, then watch the solution video:
- https://youtu.be/4BxtTyMn3ho

- 2. A 0.100-kg ice chunk at its melting point (0°C) is added to 0.644 kg of water.
- a) How much energy must the ice absorb to melt completely?
- b) How much did the temperature of the water lower due to the ice melting?

That's it!